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Distributed Space–Time-Coded Protocols
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Abstract—We develop and analyze space–time coded cooper-
ative diversity protocols for combating multipath fading across
multiple protocol layers in a wireless network. The protocols
exploit spatial diversity available among a collection of distributed
terminals that relay messages for one another in such a manner
that the destination terminal can average the fading, even though
it is unknown a priori which terminals will be involved. In
particular, a source initiates transmission to its destination, and
many relays potentially receive the transmission. Those terminals
that can fully decode the transmission utilize a space-time code
to cooperatively relay to the destination. We demonstrate that
these protocols achieve full spatial diversity in the number of
cooperating terminals, not just the number of decoding relays,
and can be used effectively for higher spectral efficiencies than
repetition-based schemes. We discuss issues related to space–time
code design for these protocols, emphasizing codes that readily
allow for appealing distributed versions.

Index Terms—Diversity techniques, fading channels, outage
probability, relay channel, user cooperation, wireless networks.

I. INTRODUCTION

I N wireless networks, signal fading arising from multipath
propagation is a particularly severe form of interference that

can be mitigated through the use ofdiversity—transmission of
redundant signals over essentially independent channel realiza-
tions in conjunction with suitable receiver combining to average
the channel effects. Space, or multiple-antenna, diversity tech-
niques are particularly attractive as they can be readily com-
bined with other forms of diversity, e.g., time and frequency di-
versity, and still offer dramatic performance gains when other
forms of diversity are unavailable. In contrast to the more con-
ventional forms of single-user space diversity with physical ar-
rays—co-located antenna elements connected via high-band-
width cabling—this work builds upon the classical relay channel
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model [1] and examines the problem of creating and exploiting
space diversity using a collection of distributed antennas be-
longing to multiple users, each with their own information to
transmit. We refer to this form of space diversity ascoopera-
tive diversity(cf. user cooperation diversityof [2]) because the
terminals share their antennas and other resources to create a
“virtual array” through distributed transmission and signal pro-
cessing.

In [3], [4], we develop various cooperative diversity algo-
rithms for a pair of terminals based upon relays amplifying their
received signals or fully decoding and repeating information.
We refer to these algorithms asamplify-and-forwardand de-
code-and-forward, respectively. In this paper, we extend these
algorithms to combat multipath fading in larger networks. Full
spatial diversity benefits of theserepetition-based cooperative
diversity algorithms, as we refer to them throughout this paper,
come at a price of decreasing bandwidth efficiency with the
number of cooperating terminals, because each relay requires
its own subchannel for repetition. As in [3], [4], limited feed-
back from the destination terminal provides one means of over-
coming such bandwidth inefficiencies, but we do not repeat the
analysis here. Instead, we develop in this paper an alternative
approach to improving bandwidth efficiency of the algorithms
based upon space–time codes that allow all relays to transmit
on the same subchannel. Requiring more computational com-
plexity in the terminals, we will see thesespace–time-coded
cooperative diversity algorithmsalso offer full spatial diversity
benefits without requiring feedback. Both repetition-based and
space–time-coded cooperative diversity are amenable to dis-
tributed implementation.

We consider a wireless network with a set of transmitting ter-
minals denoted . Each transmitting source
terminal has information to transmit to a single desti-
nation terminal, denoted , potentially using terminals

as relays. Thus, there are cooperating terminals
communicating to . For algorithms in which we require the
relays to fully decode the source message, we define thede-
coding set to be the set of relays that can decode the mes-
sage of source. In the case of amplify-and-forward coopera-
tive diversity, we take . Although throughout
the paper we point out the algorithmic differences between de-
code-and-forward and amplify-and-forward protocols that are
repetition-based, we note that the analysis to follow focuses on
decode-and-forward. Using the tools developed in [5], together
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Fig. 1. Illustration of the two phases of repetition-based and space–time-coded
cooperative diversity algorithms. In the first phase, the source broadcasts to the
destination as well as potential relays. Decoding relays are shaded. In the second
phase, the decoding relays either repeat on orthogonal subchannels or utilize a
space–time code to simultaneously transmit to the destination.

with the results of [3], [4], the analysis can be extended to am-
plify-and-forward, for which similar performance characteris-
tics can be obtained.

Both classes of algorithms consist of two transmission
phases, as in [3], [4]. Fig. 1 illustrates these two phases, and
allows us to point out the similarities and differences between
the algorithms. In the first phase, the source broadcasts to its
destination and all potential relays. During the second phase
of the algorithms, the other terminals relay to the destination,
either on orthogonal subchannels in the case of repetition-based
cooperative diversity, or simultaneously on the same sub-
channel in the case of space–time-coded cooperative diversity.

To summarize our results, we show the outage probability
performance of repetition-based cooperative diversity decays
asymptotically in proportional to R ,
where corresponds to the average signal-to-noise ratio
(SNR) between terminals, and corresponds
to a suitably-normalized spectral efficiency of the protocol. In
this context, full diversity refers to the fact that, as ,
the outage probability decays proportional to . By
contrast, the outage probability performance of noncooperative
transmission decays asymptotically as R , where

is allowed, and as as .
Thus, while the outage probability performance of cooperative
diversity can decay faster, it does so only for small , in
particular, for . For , the
inherent bandwidth inefficiency of repetition-based cooperative
diversity outweighs the benefits of diversity gains, so that
noncooperative transmission is preferable in this regime.

Of course, there are more general forms of decode-and-for-
ward transmission than repetition, just as there are more gen-
eral forms of space–time codes. Space–time-coded cooperative
transmission leads to schemes for which outage probability per-
formance decays asymptotically as R . Thus,
they a) achieve full spatial diversity order as , b)
have larger diversity order than repetition-based algorithms for
all , and c) are preferable to noncooperative transmission
if . Moreover, we will see that these
protocols may be readily implemented in a distributed fashion,
because they only require the relays to estimate the SNR of their
received signals, decode them if the SNR is sufficiently high,
re-encode with the appropriate waveform from a space–time
code, and retransmit in the same subchannel.

II. SYSTEM MODEL

This section highlights the system model that we employ to
develop extensions of the repetition-based algorithms in [3],
[4] as well as the space–time-coded cooperative diversity al-
gorithms. Differences between the model employed here and
the one employed in [3], [4] include a larger number of ter-
minals and different medium-access control protocols for rep-
etition-based and space–time-coded cooperative diversity. As a
result, in this section, we only summarize the fundamental ele-
ments of the system model.

Narrow-band transmissions suffer the effects of frequency
nonselective Rayleigh fading and additive white Gaussian noise
(AWGN). We consider the scenario in which the receivers can
accurately measure the realized fading coefficients in their re-
ceived signals, but the transmitters either do not possess or do
not exploit knowledge of the realized fading coefficients. As in
[3], [4], we focus on the case of slow fading and measure perfor-
mance by outage probability to isolate the benefits of space di-
versity. We utilize a baseband-equivalent, discrete-time channel
model for the continuous-time channel.

A. Medium-Access Control

For medium-access control, terminals transmit on essentially
orthogonal channels as in many current wireless networks. As a
baseline for comparison, Fig. 2 illustrates example channel al-
locations for noncooperative transmission, in which each trans-
mitting terminal utilizes a fraction of the total degrees of
freedom in the channel.

For cooperative diversity transmission, the medium-access
control protocol also manages orthogonal relaying to ensure that
terminals satisfy the half-duplex constraint and do not transmit
and receive simultaneously on the same subchannel. Note that
these are the same basic restrictions on medium-access con-
trol protocols described in [3], [4]. We now describe how the
medium-access control protocol differs under repetition-based
and space–time-coded cooperative diversity.

Fig. 3 illustrates example channel and subchannel allocations
for repetition-based cooperative diversity, in which relays either
amplify what they receive or fully decode and repeat the source
signal, as in [3], [4]. In order for the destination to combine these
signals and achieve diversity gains, the repetitions must occur
on essentially orthogonal subchannels. For simplicity, Fig. 3
shows channel allocations for different source terminals across
frequency, and subchannel allocations for different relays across
time. More generally, for a given sourceand destination ,
the relays can repeat in any predetermined order. Ar-
bitrary permutations of these allocations in time and frequency
do not alter the conclusions to follow, as long as causality is pre-
served and each of the subchannels contains a fraction of
the total degrees of freedom in the channel. As in noncooper-
ative transmission, transmission between sourceand destina-
tion utilizes a fraction of the total degrees of freedom
in the channel. Similarly, each cooperating terminal transmits in
a fraction of the total degrees of freedom.

Fig. 4 illustrates example channel and subchannel allocations
for space–time-coded cooperative diversity, in which relays
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Fig. 2. Noncooperative medium-access control. Example source allocations amongm transmitting terminals across orthogonal frequency channels.

Fig. 3. Repetition-based medium-access control. Example source channel allocations across frequency and relay subchannel allocations across time for
repetition-based cooperative diversity amongm terminals.

Fig. 4. Space–time-coded medium-access control. Example channel allocations across frequency and time form transmitting terminals. For sources, D(s)
denotes the set of decoding relays participating in a space–time code during the second phase.

utilize a suitable space–time code in the second phase and
therefore can transmit simultaneously on the same subchannel.
Again, transmission between sourceand destination
utilizes of the total degrees of freedom in the channel.
However, in contrast to noncooperative transmission and rep-
etition-based cooperative diversity transmission, each terminal
employing space–time-coded cooperative diversity transmits in

the total degrees of freedom in the channel. It is important
to keep track of these ratios when normalizing power and
bandwidth in the sequel.

B. Equivalent Channel Models

Under the above orthogonality constraints, we can now
conveniently, and without loss of generality, characterize our

channel models. Due to symmetry of the channel allocations,
we focus on transmission of a message from sourceto its
destination using terminals as relays.

During the first phase, each potential relay
receives

(1)

in the appropriate subchannel, where is the source
transmitted signal and is the received signal at. For
decode-and-forward transmission, if the SNR is sufficiently
large for to decode the source transmission, thenserves as
a decoding relay for the source, so that . Again, for
amplify-and-forward transmission, we can think of as
being the entire set of relays for source, i.e., .
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The destination receives signals during both phases. During
the first phase, we model the received signal at as

(2)

in the appropriate subchannel. During the second phase, the
equivalent channel models are different for repetition-based and
space–time-coded cooperative diversity. For repetition-based
cooperative diversity, the destination receives separate retrans-
missions from each of the relays, i.e., for , we
model the received signal at as

(3)

in the appropriate subchannel, where is the transmitted
signal of relay . For space–time-coded cooperative diversity,
all of the relay transmissions occur in the same subchannel and
superimpose at the destination, so that

(4)

in the appropriate subchannel.
In (1)–(4), captures the effects of path loss, shadowing,

and frequency nonselective fading, and captures the ef-
fects of receiver noise and other forms of interference in the
system. Note that all the fading coefficients are constant over
the example time and frequency axes shown in Figs. 2–4. We
focus on the scenario in which the fading coefficients are known
to, i.e., accurately measured by, the appropriate receivers, but
not fully known to, or not exploited by, the transmitters. Sta-
tistically, we model as zero-mean, independent, circularly
symmetric complex Gaussian random variables with variances

, so that the magnitudes are Rayleigh distributed
( are exponentially distributed with parameter ) and
the phases are uniformly distributed on . Further-
more, we model as zero-mean mutually independent, cir-
cularly symmetric, complex Gaussian random sequences with
variance .

C. Parameterizations

Two important parameters of the system are the transmit SNR
and the spectral efficiency. It is natural to define these pa-

rameters in terms of standard parameters in the continuous-time
channel with noncooperative transmission (cf. Fig. 2) as a base-
line.

For a continuous-time channel with total bandwidthhertz
available for transmission, the discrete-time model contains
two-dimensional symbols per second (2-D/s). If the transmit-
ting terminals have an average power constraint in the con-
tinuous-time channel model of joules per second (J/s), we
see that this translates into a discrete-time power constraint of

J/2-D, since each terminal transmits in a frac-
tion of the available degrees of freedom for noncoopera-
tive transmission (cf. Fig. 2) and repetition-based cooperative
diversity (cf. Fig. 3). Thus, the channel model is parameterized
by the SNR random variables , where

(5)

is the SNR without fading. For space–time-coded cooperative
diversity (cf. Fig. 4), the terminals transmit in half the available
degrees of freedom, so the discrete-time power constraint be-
comes .

In addition to SNR, transmission schemes are further param-
eterized by the spectral efficiencybits per second per hertz
(b/s/Hz) attempted by the transmitting terminals. Note that
throughout this paper, is the transmission rate normalized by
the number of degrees of freedom utilized by each terminal
under noncooperative transmission, not by the total number of
degrees of freedom in the channel.

Nominally, one could parameterize the system by the pair
; however, our results lend additional insight when we

parameterize the system by the pair , where1

(6)

For an AWGN channel with bandwidth and SNR given
by , is the spectral efficiency normalized
by themaximumachievable spectral efficiency, i.e., channel ca-
pacity. In our setting with fading, as we increase , the two
parameterizations yield tradeoffs between different aspects of
system performance: results under exhibit a tradeoff
between the normalized SNR gain and spectral efficiency of a
protocol, while results under exhibit a tradeoff be-
tween the diversity order and normalized spectral efficiency of a
protocol [3], [4]. The latter tradeoff, called thediversity–multi-
plexingtradeoff, was developed originally in the context of mul-
tiple-antenna systems in [6], [7].

III. REPETITION-BASED COOPERATIVEDIVERSITY

In this section, we analyze performance of a repetition de-
code-and-forward cooperative diversity algorithm for more than
two terminals. Such protocols consist of the source broadcasting
its transmission to its destination and potential relays. Potential
relays that can decode the transmission become decoding relays
and participate in the second phase of the protocol by repeating
the source message on orthogonal subchannels. Although the
set of decoding relays is a random set, we will see that
protocols of this form offer full spatial diversity in the number
of cooperating terminals, not just the number of decoding relays
participating in the second phase. Interestingly, potential relays
that cannot decode contribute as much to the performance of
the protocol as the decoding relays, just as in the selection de-
code-and-forward algorithm developed for two terminals in [3],
[4]. We note that similar high-SNR results can be obtained for
amplify-and-forward transmission using the appropriate results
in [3]–[5].

A. Mutual Information and Outage Probability

Since the channel average mutual information is a func-
tion of, e.g., the coding scheme, the rule for including potential
relays into the decoding set , and the fading coefficients
of the channel, it too is a random variable. As in [3], [4], the
event that this mutual information random variable falls

1Unless otherwise indicated, logarithms in this paper are taken to base2.
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below some fixed spectral efficiencyis referred to as an outage
event, and the probability of an outage event, , is re-
ferred to as the outage probability of the channel [8].

Since is a random set, we utilize the total probability
law and write

(7)

1) Outage Conditioned on the Decoding Set:For repetition
coding, the random codebook at the source is generated inde-
pendent and identically distributed (i.i.d.) circularly symmetric,
complex Gaussian; each of the relays employs the exact same
codebook as the source. Conditioned on being the de-
coding set, the mutual information betweenand is

(8)
Thus, involves2 independent
fading coefficients, so we expect it to decay asymptotically pro-
portional to . Indeed, we develop the following
high- approximation3 in the Appendix:

R

(9)

Note that we have expressed (9) in such a way that the first term
captures the dependence upon and the second term captures
the dependence upon .

More generally, with the channel allocation illustrated in
Fig. 3, the relays could employ independently generated code-
books, corresponding to utilizing parallel channels. In this case,
the mutual information would become a sum of logarithmic
terms

(10)

instead of the log-sum in (8). By Jensen’s inequality, clearly (10)
is larger than (8), which means that parallel channel coding is
more bandwidth efficient than repetition coding, as we might
expect. Although the analysis can be extended to the parallel
channel case [3], [4], we focus in this paper on repetition coding
because of its low complexity and on space–time-coded cooper-
ative diversity because it offers even larger mutual informations,
and therefore enhanced bandwidth efficiency, when compared
to (10).

2) Decoding Set Probability:Next, we consider the term
, the probability of a particular decoding set. As one

rule for selecting from the potential relays, we can require that
a potential relay fully decode the source message in order to par-
ticipate in the second phase. Indeed, full decoding is required in
order for the mutual information expression (8) to be correct;

2For a setS, jSj denotes the cardinality of the set. This should not be confused
with the usual notationjxj for absolute value of a variablex.

3The approximationf(SNR) � g(SNR) is in the sense off(SNR)=g(SNR)!
1 asSNR ! 1.

however, nothing prevents us from imposing additional restric-
tions on the members of the set . For example, we might
require that a potential relay fully decodeandexperience a re-
alized SNR some factor larger than its average, to either the
source, the destination, or both.

Since the realized mutual information betweenand for
i.i.d. complex Gaussian codebooks is given by

under this rule we have

R

R

Moreover, since each potential relay makes its decision indepen-
dently under the above restrictions, and the fading coefficients
are independent in our model, we have

R

R

R

(11)

Note that any selection means by which and
, for large, independently for

each , will result in similar asymptotic behavior for .
Combining (9) and (11) into (7), we obtain

R

(12)

Fig. 5 compares the results of numeric integration of the ac-
tual outage probability to computing the approximation (12),
for an increasing number of terminals with . As the
result (12) and Fig. 5 indicate, repetition decode-and-forward
cooperative diversity achieves full spatial diversity of order,
the number of cooperating terminals, for sufficiently large SNR.
However, the SNR loss due to bandwidth inefficiency is expo-
nential in .

B. Convenient Bounds

While the approximation given in (12) is quite general and
can be numerically evaluated to determine performance, it is not
very convenient for further analysis. Its complexity results from
dependence upon . In this subsection, we develop upper
and lower bounds for (12) that we exploit in the sequel.

Our objective is to simplify the summation in (12). To this
end, we note that for a given decoding set , either ,
in which case appears in the corresponding term in (12),
or , in which case appears in the corresponding
term in (12). We, therefore, define

(13)
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Fig. 5. Outage probabilities for repetition-based cooperative diversity.
Comparison of numeric integration of the outage probability (solid lines) to
calculation of the outage probability approximation (12) (dashed lines) versus
SNR for different network sizesm = 1; 2; . . . ; 9. Successive solid curves
from left to right at high outage probability correspond to larger networks.
For simplicity of exposition, we have plotted the case ofR = 1 b/s/Hz and
� = 1; more generally, the results can be readily updated to incorporate a
model of the network geometry.

and . Then the product dependent upon
is bounded by

(14)

where is the geometric mean of the and is the geometric
mean of the , for . We note that the upper and lower
bounds in (14) are independent of . We also note that the
bounds in (14) coincide, i.e., , if, though not only if,

for all . Viewing as a measure of distance
between terminals and , the class of planar network geome-
tries that satisfy this condition are those in which all the relays
lie with arbitrary spacing along the perpendicular bisector be-
tween the source and destination. A complete study of the ef-
fects of network geometry on performance is warranted, but be-
yond the scope of this paper.

Substituting (14) into (12), we arrive at the following simpli-
fied asymptotic bounds for outage probability:

R

(15)

R

(16)

IV. SPACE–TIME-CODED COOPERATIVEDIVERSITY

In this section, we analyze performance of a decode-and-for-
ward space–time cooperative diversity algorithm. Such proto-
cols operate in similar fashion to the repetition decode-and-for-

ward cooperative diversity algorithm analyzed in the previous
section, except that all the relays transmit simultaneously on the
same subchannel using a suitable space–time code. Again, we
will see that protocols of this form offer full spatial diversity
in the number of cooperating terminals, not just the number of
decoding relays participating in the second phase. In addition,
these algorithms have superior bandwidth efficiency to repeti-
tion-based algorithms.

A. Mutual Information and Outage Probability

As before, we utilize the total probability law to write

(17)

and examine each term in the summation.
1) Outage Conditioned on the Decoding Set:Conditioned

on being the decoding set, the mutual information be-
tween and for random codebooks generated i.i.d. circu-
larly symmetric, complex Gaussian at the source and all poten-
tial relays can be shown to be

(18)

the sum of the mutual informations for two “parallel” channels,
one from the source to the destination, and one from the set of
decoding relays to the destination. Again,
involves independent fading coefficients, so we ex-
pect it to decay asymptotically proportional to .
We develop the following high-SNR approximation in the Ap-
pendix:

R

R (19)

where

(20)

and . Note that we have expressed (19) in such a way
that the first term captures the dependence uponand the
second term captures the dependence upon .

2) Decoding Set Probability:Next, we consider the term
, the probability of a particular decoding set. As be-

fore, we require that a potential relay fully decode the source
message in order to participate in the second phase, a necessary
condition for the mutual information expression (18) to be cor-
rect.

Since the realized mutual information betweenand for
i.i.d. complex Gaussian codebooks is given by
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under this rule we have
R

R

Moreover, since each potential relay makes its decision indepen-
dently, and the fading coefficients are independent in our model,
we have

R

R

R

(21)

Combining (19) and (21) into (17), we obtain

R

R (22)

Fig. 6 compares the results of numeric integration of the ac-
tual outage probability to computing the approximation (22), for
an increasing number of terminals with . As the result
(22) and Fig. 6 indicate, space–time-coded cooperative diver-
sity achieves full spatial diversity of order , the number of
cooperating terminals, for sufficiently large SNR. In contrast to
repetition-based algorithms, the SNR loss for space–time-coded
cooperative diversity is only linear in .

B. Convenient Bounds

Again, although the approximation given in (22) is quite
general and can be numerically evaluated to determine perfor-
mance, it is not very convenient for further analysis. There are
two factors contributing to its complexity: dependence upon

, and the involved closed-form expression for as
grows. In this subsection, we develop upper and lower bounds
for (22) that we exploit in the sequel.

Our objective is to simplify the summation in (22). The
product dependent upon can again be bounded as in
(14). To avoid dealing with (20), we exploit the bounds

(23)

Combining (14) and (23) into (22), we arrive at the following
simplified asymptotic bounds for outage probability:

R

R (24)

R

(25)

Fig. 6. Outage probability of space–time-coded cooperative diversity.
Comparison of numeric integration of the outage probability (solid lines) to
calculation of the outage probability approximation (22) (dashed lines) versus
SNR for different network sizesm = 1; 2; . . . ; 9. Successive solid curves
from right to left at low outage probability correspond to larger networks.
For simplicity of exposition, we have plotted the case ofR = 1 b/s/Hz and
� = 1; more generally, the results can be readily updated to incorporate a
model of the network geometry.

C. Practical Issues

1) Space–Time Code Design:The outage analysis in Sec-
tion IV relies on a random coding argument, and demonstrates
that full spatial diversity can be achieved using such a rich set
of codes. In practice, one may wonder whether or not there
exist space–time codes for which the number of participating
antennas is not knowna priori and yet full diversity can be
achieved. More specifically, if we design a space–time code for
a maximum of transmit antennas, but only a randomly se-
lected subset of of those antennas actually transmit, can the
space–time code offer diversity? It turns out that the class of
space–time block codes based upon orthogonal designs [9], [10]
have this property [11]. Essentially, these codes have orthog-
onal waveforms emitted from each antenna, corresponding to
columns in a code matrix. Absence of an antenna corresponds
to deletion of a column in the matrix, analogous to that antenna
experiencing a deep fade, but the columns remain orthogonal,
allowing the code to maintain its residual diversity benefits.
Thus, space–time-coded cooperative diversity protocols may be
readily deployed in practice using such codes.

We note that there are issues with space–time codes based
upon orthogonal designs, specifically nonexistence of “rate-
one” codes for more than two antennas, limited capacity with
multiple receive antennas, and so forth [9], [10], [12]. On the
other hand, orthogonal designs do offer full diversity benefits
given a single receive antenna, which is the scenario of interest
in this paper, and have the useful property that they maintain
full residual diversity benefits as discussed above. It may be
that other practical space–time codes have this property as
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well. Our purpose in adding some discussion on these issues
is to point out the potential for leveraging existing space–time
code designs as well as to spark interest in code design for
cooperative problems.

2) Distributed Implementation:Given a suitably designed
space–time code, space–time-coded cooperative diversity re-
duces to a simple, distributed network protocol. The network
must possess a means for distributing columns from the code
matrix to the terminals, as well as coordinating the medium-ac-
cess control. With these elements in place, when each terminal
transmits its message, the other terminals receive and potentially
decode, requiring only an SNR measurement. If a relay can de-
code, it transmits the information in the second phase using its
column from the space–time code matrix. Because the destina-
tion receiver can measure the fading, it can determine which re-
lays are involved in the second phase and adapt its decoding rule
appropriately. Although certainly the terminals could exchange
more information in order to adapt power to the network ge-
ometry, for example, such overhead is not required in order to
obtain full diversity.

One of the key challenges to implementing such protocols
could be block and symbol synchronization of the cooperating
terminals. Such synchronization might be obtained through pe-
riodic transmission of known synchronization prefixes, as pro-
posed in current wireless local-area network (LAN) standards
[13]. A detailed study of issues involved with synchronization
is beyond the scope of this paper.

V. DIVERSITY–MULTIPLEXING TRADEOFF

In Sections III and IV, we parameterize performance by the
pair . We interpreted the results for fixedand growing

, as is typically done from a communication-theoretic view
for a fixed-rate system operating over a variety of channel con-
ditions. Since the mutual information generally increases with
increasing , another possibility is to increasewith . It
turns out that increasing the rate according to

(26)

where is a constant, leads to an illuminating
tradeoff between the reliability with which data can be received
and the ability to transmit more data. This tradeoff as a func-
tion of has been called thediversity–multiplexingtradeoff
for multiple-antenna systems [6], [7]. In this section, we ex-
tend the diversity–multiplexing tradeoff to repetition-based and
space–time-coded cooperative diversity.

Specifically, as in [6], [7], we approximate the outage proba-
bility as

R

i.e., in the sense of equality to first order in the exponent, where

SNR

(27)

with given by (26). A tradeoff between diversity and multi-
plexing results because, as we will see, increasing de-
creases .

Utilizing the lower and upper bounds (15) and (16) in (27)
yields diversity order

(28)

for repetition decode-and-forward cooperative diversity. Simi-
larly, utilizing the lower and upper bounds (24) and (25) in (27)
yields upper and lower bounds, respectively, on the diversity
order

(29)

for space–time-coded cooperative diversity.
Fig. 7 compares the diversity exponents, along with the

corresponding tradeoff for noncooperative transmission,
, from [3], [4]. Both repetition-based

and space–time-coded cooperative diversity offer full diversity
as . Clearly, space–time-coded cooperative

diversity offers larger diversity order than repetition-based
algorithms and can be effectively utilized for higher spectral
efficiencies than repetition-based schemes.

VI. CONCLUSION

As we have developed in this paper, cooperative diversity,
and particularly space–time-coded cooperative diversity, pro-
vides an effective way for a collection of wireless terminals to
relay signals for one another in order to exploit spatial diver-
sity in the channel. Extending our earlier results for two co-
operating terminals [3], [4], we have analyzed repetition-based
and space–time-coded cooperative diversity in nonergodic set-
tings using outage probability as a performance measure. In both
cases, we showed how the algorithms provide full spatial diver-
sity in the number of cooperating terminals, and characterized
the effective coding or SNR gain/loss as a function the interter-
minal average SNRs. We also characterized the diversity–multi-
plexing tradeoff for these algorithms, and demonstrated the ex-
tent to which space–time-coded cooperative diversity achieves
higher diversity order than repetition-based schemes for larger
spectral efficiencies.

Cooperative diversity relates to two topics of active research
in resource-efficient wireless communication and networks.
From one perspective, cooperative diversity mimics the per-
formance advantages of multiple-antenna, or multiple-input,
multiple-output (MIMO), systems by exploiting the spatial
richness of the wireless channel. From another perspective,
cooperative diversity corresponds to a particular form of
network coding that explicitly models the multipath fading,
noise, and interference effects of the wireless channel. In either
case, existing insights and code designs can be leveraged and
tailored to the distributed nature of the cooperative problem.

We believe several areas of future research on cooperative
diversity will be fruitful. First, practical coding schemes can
be designed, building upon insights obtained from information-
theoretic treatments. Some progress toward this objective has
occurred in [14], [15]. Second, algorithms and protocols for
forming cooperating groups of terminals will be necessary. The
effects of network geometry on the coding or SNR gain/loss of
the protocols will be particularly important here. Third, integra-
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Fig. 7. Diversity order�(R ) for noncooperative transmission, repetition-based cooperative diversity, and space–time-coded cooperative diversity. As
R ! 0, all cooperative diversity protocols provide full spatial diversity orderm, the number of cooperating terminals. Relative to direct transmission,
space–time-coded cooperative diversity can be effectively utilized for a much broader range ofR than repetition-coded cooperative diversity, especially as
m becomes large.

tion and interaction with higher layer network protocols, such
as routing, can be explored.

APPENDIX

HIGH-SNR RESULTS

We gather in this appendix the analytical results for Sec-
tions III-A and IV-A, in order to focus the body of the paper
on discussion and interpretation of the results. We begin in sub-
section A of the appendix by developing a general result about
asymptotic properties of the cumulative distribution function
(CDF) of a sum of independent random variables. We then apply
this result to obtain large-SNR approximations for repetition de-
code-and-forward cooperative diversity in subsection B and for
space–time-coded cooperative diversity in subsection C of the
appendix.

A. The Basic Result

Both of the arguments later in this appendix rely upon the fol-
lowing result, which is a generalization of [4, Fact 2] to several
random variables with fairly general probability density func-
tions (PDFs).

Claim 1: Let , , be positive, independent
random variables with

(30)

and

(31)

Then

(32)

Before proving Claim 1, we note that the exponential distribu-
tion satisfies both requirements (30) and (31). More generally,
however, this result suggests that many of our results hold for
a much larger class of PDFs, and, in particular, depend mainly
upon properties of the PDFs near the origin.

Proof: Let , . Then

(33)

(34)

where the last equality results from the change of variables
. Thus, it is sufficient for us to compute the limit

(35)

To lower-bound the , we exploit Fatou’s lemma [16]
to obtain

(36)

Now, , and by independence the PDF of is
the convolution of the PDFs of and . Specifically, since
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is positive, we have

(37)

where the last equality results from the change of variables
.

Letting

(38)

substituting into (37), and again exploiting Fatou’s lemma, we
obtain the recursion

(39)

where the last inequality follows from (30) and substitution of
. Beginning with from (30), the

recursion (39) yields

(40)

As a result, (36) with (38) and (40) yields

(41)

To upper-bound the , we obtain a recursive upper
bound for the PDF of similar to the lower bound developed
above. Specifically, letting

(42)

we have

(43)

where the equality comes from the convolution (37), and the
inequality follows from (31) and substitution of

. Beginning with from (31), (43) yields an
upper bound very similar to the lower bound in (40), namely

(44)

Then

(45)

Together with the fact that, in general , (41),
and (45) yield the desired result (32).

B. Repetition Decode-and-Forward Cooperative Diversity

In this subsection, we utilize the result of Claim 1 to obtain a
large approximation for , the conditional
outage probability for repetition decode-and-forward coopera-
tive diversity for source given a set of decoding relays .
As in (8), is of the form

(46)

where are independent exponential random variables with
parameters , .

After some algebraic manipulations, the outage probability
reduces to exactly the same form as in Claim 1

(47)

with R as . Thus, Claim 1 and
continuity yield the approximation

R

(48)

for large .

C. Space–Time-Coded Cooperative Diversity

In this subsection, we compute a large- approximation
for , the conditional outage probability for
space–time-coded cooperative diversity for sourcegiven a set
of decoding relays . As in (18), is of the form

(49)

where again are independent exponential random variables
with parameters , .

Let

R , and R . Then

(50)

Note the penultimate equality in (50) follows from the change
of variables , and the last equality follows from substi-
tuting the CDF for .
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We now compute the limit

(51)

that, along with continuity, provides the large- approxima-
tion

R

R
(52)

To lower-bound the , we exploit Fatou’s lemma in (50)
to obtain

(53)

where the first equality follows from properties of exponentials
and substitution of from (38), and the second equality
follows from the result (40) in the proof of Claim 1.

To upper-bound the , we derive

(54)

where the first inequality follows from substitution of
from (42), the second inequality follows from

the fact that for all , and the third
inequality follows from the result (44) in Claim 1.

Taken together with the fact that , (53) and
(54) yield the desired result (51).
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